文章编号:100025870(2005)0320070205

油、气、水三相水平井流入动态预测模型及其应用

董长银¹, 姬生柱², 王希涛²

(1. 中国石油大学石油工程学院山东东营 257061; 2. 大庆油田有限公司第八采油厂, 黑龙江大庆 163000)

摘要:目前关于水平井流入动态(IPR)的研究仅限于溶解气驱的情况,还没有适合于油、气、水三相和整个油藏压力 范围的水平井 IPR 模型。首先对现有的 4 种溶解气驱 IPR 方程进行了筛选,以 Cheng 和刘想平的方程为基础,建立 了适用于油藏压力高于饱和压力的不含水组合型水平井 IPR 模型。采用纯油与纯水 IPR 曲线加权平均得到综合 IPR 曲线的方法,将组合型 IPR 方程扩展到油、气、水三相的情况,建立了适用于油、气、水三相和整个油藏压力范围 的水平井 IPR 模型,并对水平井流入动态预测计算方法进行了研究。利用该模型可以计算采液指数、产量和井底流 压以及绘制 IPR 曲线等。模型及软件已应用于大庆肇州油田低渗水平井的流入动态预测,效果良好。 关键词:水平井;流入动态;预测模型;油、气、水三相流;采液指数

中图分类号: TE 355.6 文献标识码: A

Inflow performance relationship prediction model for three phase flow of oil, gas and water in horizontal wells and its application

DONG Chang2yin¹, JI Sheng2zhu², WANG X2tao²

(1. College of Petroleum Engineering in China University of Petroleum, Dongying 257061, China;

2. The 8th Oil Production Plant of Daqing Oilfield Limited Company, Daqing 163000, China)

Abstract: The study of inflow performance relationship (IPR) is mainly focused on dissolved2gas drive reservoirs, and there is no applicable horizontal IPR model for three phase flow of oil, gas and water and the whole reservoir pressure. In this work, based on Cheng and Liu s formulas, the two of four present IPR equations for horizontal wells in dissolved2gas drive reservoirs, two assem2 bled IPR models for horizontal wells with reservoir pressure higher than saturation pressure and water cut of zero were evolved. Then, by weighted average method, the compositive IPR curve with water flow can be obtained from pure oil IPR curve and pure water IPR curve. The assembled IPR models without water flow were extended to be applicable to three phase flow of oil, gas and water. As a result, a new IPR model for horizontal wells with normal reservoir conditions was established, which can be used to calculate fluid productivity index, production rate and bottom hole flowing pressure and draw IPR curve. The model and the corre2 sponding programs have been used to predict the horizontal well inflow performance in Zhaozhou Oilfield and the effect is excellent. Key words: horizontal well; inflow performance relationship; prediction model; three phase flow of oil, gas and water; flu2 id productivity index.

目前水平井流入动态的研究多集中在两个方面:一是考虑各种表皮系数,通过水平井产能公式计算流入动态^[1-8],这种方法需要大量准确的地层参数,实际应用较为困难;二是通过生产数据回归流入动态关系^[9-11],属于真正意义上的流入动态预测。 后者通常是对溶解气驱油藏水平井的生产数据或数 值模拟结果进行回归,建立水平井流入动态方程,这 些方程仅适用于油藏压力低于饱和压力的油藏。而 对于非溶解气驱、已进入含水期的绝大多数油藏中 的水平井,尚缺乏可用的流入动态模型和预测计算 方法。笔者通过筛选现有的溶解气驱水平井流入动 态方程,研究适用于油藏压力高于饱和压力情况的 组合型 IPR 方程,并将其扩展到油、气、水三相的情 况,建立一套适用于油、气、水三相和整个油藏压力 范围的水平井 IPR 模型和预测计算方法。

基金项目:国家自然科学基金资助课题(50274055);石油工程学院青年教师基金资助课题 作者简介:董长银(1976-),男(汉族),河南卫辉人,讲师,博士,从事采油工程、固液两相流和油气井防砂方面的教学与科研工作。

收稿日期: 2004-12-04

1 溶解气驱水平井 IPR 方程

目前共有4种溶解气驱水平井 IPR 方程,分别 由 Cheng^[9]、Bendakhlia^[9]、刘想平^[10] 和黄炳光^[11] 提出。Bendakhlia 用两种三维三相黑油模拟器研究 得到一种溶解气驱水平井的流入动态关系;黄炳光 将研究溶解气驱垂直井流入动态的方法用于水平井 分析,根据 Bendakhlia 的结果,也得到一种相似的流 入动态关系方程。由于方程本身数学形式的原因, 使用本文的研究方法无法利用 Bendakhlia 和黄炳光 的方程进一步建立油、气、水三相的流入动态模型 (限于篇幅,推导与证明过程从略)。因此本文中仅 以其他两种方法为基础进行研究。

刘想平用黑油模拟器研究了溶解气驱油藏水平 井的流入动态,采用回归方法得到如下方程:

$$\frac{q_o}{q_{omax}} = 1 - a \frac{p_{wf}}{p_r} (1 - a)^2 \left(\frac{p_{wf}}{p_r}\right)^2 - a(1 - a) \left(\frac{p_{wf}}{p_r}\right)^3.$$
(1)

式中, qo 为产油量, t/d; qomax为最大产油量, t/d; pwf 为井底流压, MPa; pr 为油藏压力, MPa; a 为待定参 数,0[a[1。

Cheng 对溶解气驱油藏中斜井和水平井进行了 数值模拟,并用回归的方法得到了如下不同井斜角 油井的 IPR 方程:

$$\frac{q_o}{q_{omax}} = A - B \frac{p_{wf}}{p_r} - C \left(\frac{p_{wf}}{p_r}\right)^2.$$
(2)

式中, A, B, C 为井斜角的函数, 对于水平井, A= 0.9885, B= - 0.2055, C= 1.1818。

方程(1),(2)均是从溶解气驱水平井的数值模 拟结果回归而来,因此仅能用于油藏压力低于饱和 压力的溶解气驱油藏。

2 不含水组合型水平井 IPR 模型

2.1 以刘想平方程为基础的组合型 IPR 模型

图 1 为不含水组合型 IPR 曲线。在 p_r> p_b 的 油藏中, 当 p_{wf}> p_b 时, 为单相流动, 采液指数为常 数, IPR 曲线为直线, 此时的流入动态关系为

qo= J(pr- pwf), qb= J(pr- pb). (3) 式中,J 为采液指数,t/(d#MPa);pb 为饱和压力, MPa;qb 为饱和压力 pb 下的产量,t/d。

当 p_{wf}< p_b 时,为两相渗流, IPR 为曲线,分别 用 p_b, q_c 代替溶解气驱 IPR 方程(1)中的 p_r, q_{omax} 并进行产量叠加即可得到组合型 IPR 曲线上 p_{wf}< p_b 时的关系方程:

$$q_{o} = q_{b} + q_{c} \left[1 - a \frac{p_{wf}}{p_{b}} - (1 - a)^{2} \left(\frac{p_{wf}}{p_{b}} \right)^{2} - a(1 - a) \left(\frac{p_{wf}}{p_{b}} \right)^{3} \right].$$

$$(4)$$

其中

图 1 组合型 IPR 曲线

由于图 1 中 IPR 曲线在 A 点(p_{wf}= p_b)的连续 性, 方程(3), (4)在 A 点的导数应相等。对方程(3), (4)分别求导并将 p_{wf}= p_b 代入使二者相等得到

$$J = q_{c} \left[-a \frac{1}{p_{b}} - 2(1 - a)^{2} \frac{p_{wf}}{p_{b}^{2}} - 3a(1 - a) \left(\frac{p_{wf}}{p_{b}} \right)^{2} \frac{1}{p_{b}} \right] \Big|_{p_{wf} = p_{b}}, \qquad (5)$$

$$J = (2 - a^2) \frac{q_c}{p_b}, \ q_c = \frac{Jp_b}{(2 - a^2)}.$$
(6)

根据方程(4),最后得到 pw≤ pb 时采液指数的 表达式为

$$J = q_{0} \left\{ \left(p_{r} - p_{b} \right) + \frac{p_{b}}{2 - a^{2}} \left[1 - a \frac{p_{wf}}{p_{b}} - (1 - a)^{2} @ \left(\frac{p_{wf}}{p_{b}} \right)^{2} - a (1 - a) \left(\frac{p_{wf}}{p_{b}} \right)^{3} \right] \right\}^{-1}.$$
(7)

2.2 以 Cheng 方程为基础的组合型 IPR 模型

使用同样方法得到的以 Cheng 溶解气驱方程 为基础的不含水组合型水平井 IPR 方程为

$$\begin{cases} q_{o} = J(p_{r} - p_{wf}), p_{wf} \setminus p_{b}; \\ q_{o} = q_{b} + \frac{Jp_{b}}{(B+2C)} \left[A - B \frac{p_{wf}}{p_{b}} - C \left(\frac{p_{wf}}{p_{b}} \right)^{2} \right], \quad (8) \\ p_{wf} \leq p_{b}. \end{cases}$$

$$J = \frac{q_{o, test}}{p_{r} - p_{wf, test}}, p_{wf, test} \setminus p_{b};$$

$$J = q_{o, test} \left\{ (p_{r} - p_{b}) + \frac{p_{b}}{B + 2C} @ \\ \left[A - B \frac{p_{wf, test}}{p_{b}} - C \left(\frac{p_{wf, test}}{p_{b}} \right)^{2} \right] \right\}^{-1}, p_{wf, test} \leq p_{b}.$$

f_w(

式中,(qo,test, pwf,test)为产油量-流压测试点。

上述方程仅适用于不含水情况下油藏压力高于 饱和压力的常规油藏的流入动态预测。

3 油、气、水三相水平井 IPR 模型

油、气、水三相水平井 IPR 模型的研究采用类 似于 Petrobras 的油水加权平均法,根据含水率取纯 油和纯水 IPR 曲线的加权平均值,得到综合 IPR 曲 线,如图 2 所示,图中 qomax, qtmax, qwmax分别为最大 产油量、产液量和产水量。

图 2 油、气、水三相 IPR 曲线

3.1 采液指数的计算

假设已知油藏压力 p_r 、饱和压力 p_b 和一个产液 量-流压测试点($q_{t,test}, p_{wf test}$)。当 $p_{wf,test} \setminus p_b$ 时,

$$J = \frac{q_{t, \text{ test}}}{p_{r} - p_{\text{ wf, test}}}.$$
 (9)

当 p wf, test 水产量分别为

$$q_0 = q_b + q_c F, q_w = J(p_r - p_{wf, test}).$$
 (10)
其中

$$F = 1 - a \frac{p_{wf, test}}{p_b} - (1 - a)^2 \left(\frac{p_{wf, test}}{p_b}\right)^2 - a(1 - a) \left(\frac{p_{wf, test}}{p_b}\right)^3.$$

式中, q_{t,test}为测试产液量, t/d; p_{wf,test}为与 q_{t,test}对 应的井底流压, MPa; q_w 为纯水 IPR 曲线上的产水 量, t/d。

综合 IPR 曲线上的 产液量, 由油、水产量 根据 含水率 fw 加权平均得到

 $q_{t,test} = q_0(1 - f_w) + q_w f_w = (1 - f_w) @$

$$[q_{b}+q_{c}F]+f_{w}J(p_{r}-p_{wf, test}).$$
(11)

将方程(3),(6)代入方程(11)并求解,得到 p_{wf,test} < p_b时采液指数J的表达式为

$$J = q_{t, \text{ test}} \left\{ (1 - f_w) \left[p_r - p_b + \frac{p_b}{2 - a^2} F \right] + \right.$$

$$p_{r} - p_{wf, test} \bigg\}^{-1}.$$
 (12)

3.2 流压的计算

已知产液指数 J 后, 可以计算饱和压力下的产 液量 q_b。根据方程(6)和纯水 IPR 曲线特征, 得

$$\begin{cases} q_{wmax} = Jp_r, \\ q_{omax} = q_b + \frac{Jp_b}{2 - a^2}, \\ q_{tmax} = (1 - f_w) q_{omax} + f_w q_{wmax}. \end{cases}$$
(13)

当给定的产量 qt < qb 时,对应的井底流压为

$$p_{\rm wf} = p_{\rm r} - \frac{q_{\rm t}}{J}.$$
 (14)

当 qb< qt< qomax时,由油相压力和水相压力根 据含水率加权平均计算得到与 qt 对应的井底流压。 由方程(10)求解油相压力时无显式解,需要采用二 分法数值求解。表达式为

$$p_{wf,o} = f(a, p_b, q_{omax}, q_b, q_t).$$
 (15)

式中, pwf, o为油相压力, MPa。

纯水 IPR 曲线为直线, 产水指数恒定, 因此水 相压力为

$$p_{wf,w} = p_r - \frac{q_t}{J}.$$

式中, p wf, w为水相压力, MPa。

根据含水率加权平均得到与 q_t 对应的井底流 压为

$$p_{wf} = f_w \left(p_r - \frac{q_t}{J} \right) + (1 - f_w) p_{wf, o}.$$
 (16)

当 $q_{omax} < q_t < q_{tmax}$ 时,图 2 中纯油 IPR 曲线消 失,无法使用油水加权平均法计算综合 IPR 曲线, 可将此区间中的综合 IPR 曲线近似为一直线段,其 斜率近似为[q_b , q_{omax}]区间上的综合 IPR 曲线在 q_{omax} 处的斜率 $\frac{dp_{wf}}{dq_t}\Big|_{q_t = q_{omax}}$, 对方程(16)求导并将 $q_t = q_{omax}$ 代入可计算该斜率。

当 qt> qomax时, qt 对应的井底流压可根据线性 关系计算, 即

$$p_{wf} = p_{wf} \Big|_{q_t = q_{omax}} + (q_t - q_{omax}) \frac{dp_{wf}}{dq_t} \Big|_{q_t = q_{omax}}.$$
 (17)

方程(9),(12~14),(16),(17)组成以刘想平溶 解气驱方程为基础的油、气、水三相水平井 IPR 模型。用同样的方法可得到以 Cheng 方程为基础的 油、气、水三相水平井 IPR 模型。表达式为 qt test

$$J = \frac{1}{p_{r} - p_{wf, test}}, p_{wf, test} \setminus p_{b};$$

$$J = q_{t, test} \left\{ (1 - f_{w}) \left[p_{r} - p_{b} + \frac{p_{b}}{(B + 2C)} F \right] + \frac{1}{f_{w}(p_{r} - p_{wf, test})} \right\}^{-1}, p_{wf, test} < p_{b}.$$
(18)
$$p_{wf} = p_{r} - \frac{q_{t}}{J}, q_{t} \left[q_{b}; p_{wf} = f_{w} \left[p_{r} - \frac{q_{t}}{J} \right] + (1 - f_{w}) p_{b} @$$

$$\left[- \frac{B}{2C} + \frac{1}{2C} \sqrt{B^{2} + 4AC} - 4C \frac{q_{t} - q_{b}}{q_{omax} - q_{b}} \right],$$

$$q_{b} < q_{t} < q_{omax};$$

$$p_{wf} = f_{w} \left[p_{r} - \frac{q_{omax}}{J} \right] + (1 - f_{w}) p_{b} @$$

$$\left[- \frac{B + \sqrt{B^{2} + 4AC} - 4C}{2C} \right] + (q_{t} - q_{omax}) @$$

$$\left[- \frac{f_{w}}{J} - \frac{(1 - f_{w})(B + 2C)}{\sqrt{B^{2} + 4AC} - 4C} \right],$$

$$q_{omax} < q_{t} < q_{tmax}.$$

4 流入动态预测计算方法

4.1 以刘想平方程为基础的水平井流入动态预测 使用以刘想平方程为基础的油、气、水三相水平 井流入动态模型进行流入动态预测,绘制 IPR 曲线 时,必须首先确定待定系数 a 和计算采液指数 J。待 定系数 a 的计算至少需要两组测点数据。假设已知 油层静压 pr 和两组测点(qtl, pwfl),(qt2, pwf2)。

若只有一个测点在饱和压力之上,即 pwfl> pb, pwf2< pb, 则使用测点(pwfl, qtl)计算产液指数

$$J = \frac{q_{t1}}{p_r - p_{wfl}},$$

然后用另外一个低于饱和压力的测点(qt2, pwf2)计 算待定系数 a。

若两个测点均位于饱和压力以下,即 pwfl < pb, pwf2 < pb, 则将两个测点分别代入方程(12)并求 解可得到采液指数 J 和参数 a。实际上仅用两个测 点计算得到的参数 a 的准确性较差,使用多个测点 数据进行非线性回归的结果才比较可靠^[10]。利用 方程(14),(16),(17)设定一组产量,可计算相应的 井底流压,从而绘制 IPR 曲线。

4.2 以 Cheng 方程为基础的水平井流入动态预测

4.2.1 油藏压力的计算

假设油藏压力未知,两个测试点的井底流压都 高于饱和压力 p_b,则油藏压力可由两个测点计算,

$$p_{r} = - q_{t1} \frac{p_{wf1} - p_{wf2}}{q_{t1} - q_{t2}} + p_{wf1}.$$

$$\overline{\mathbf{A}} p_{wf1} > p_{b}, p_{wf2} < p_{b}, \underline{\mathbf{M}} \mathbf{i} \mathbf{a} \mathbf{E} \mathbf{D} \mathbf{i} \mathbf{f} \mathbf{G} \mathbf{C} \mathbf{C} \mathbf{S}$$

$$p_{r} = \left[(1 - f_{w}) \left(- p_{b} + \frac{p_{b}F}{B + 2C} \right) - f_{w} p_{wf2} + p_{wf1} \frac{q_{t2}}{q_{t1}} \right] \left(\frac{q_{t2}}{q_{t1}} - 1 \right)^{-1}.$$

其中

$$F = A - B\left(\frac{p_{wf2}}{p_b}\right) - C\left(\frac{p_{wf2}}{p_b}\right)^2.$$

$$\frac{B}{2} = \left[q_{t2}(1 - f_w)\left(-p_b + \frac{p_bF_1}{B + 2C}\right) - f_w q_{t2}p_{wf1} + p_{wf1}\frac{q_{t2}}{q_{t1}} - q_{t1}(1 - f_w)\right]^2.$$

其中

$$F_{1} = A - B\left(\frac{p_{wf1}}{p_{b}}\right) - C\left(\frac{p_{wf1}}{p_{b}}\right)^{2}$$
$$F_{2} = A - B\left(\frac{p_{wf2}}{p_{b}}\right) - C\left(\frac{p_{wf2}}{p_{b}}\right)^{2}$$

4.2.2 流入动态预测

计算得到油藏压力 pr 后,使用一个测点,根据 其井底流压与饱和压力的关系,在方程(18)中选用 相应的公式计算采液指数 J;然后设定一组产量,使 用方程(19)可计算相应的井底流压,进而绘制水平 井 IPR 曲线。

需要注意的是,油井实际生产数据由于各种原 因往往波动比较大,某一个测点并不能真实反映水 平井的生产状况,因此为了得到更加准确的流入动 态曲线,推荐使用一段生产时间内的平均值作为测 点,进行流入动态的预测。

5 实例计算

大庆葡萄花油藏为低渗透油藏,州 662平 61 井 为水平井,水平段垂深 1 397 m,水平段长 594.2 m, 于 2003 年 1 月投产,油层压力为 10.82 MPa,下泵 深度为 1 200 m。从投产到 2003 年 8 月每月的平均 生产数据见表 1。

由于该水平井产量下降较快,生产状况在较长时间内不稳定,使用以刘想平方程为基础的流入动态模型时,待定参数 a 的回归比较困难,因此采用以 Cheng 方程为基础的油、气、水三相水平井流入动态模型对该井进行流入动态计算。

表 1 州 622平 61 井生产月报

月份	动液面 D _l / m	产液量 q _t /(t#d ⁻¹)	含水率 f _w / %	流玉 p _{wf} /MPa
1	1 1 5 1. 0	18.98	2.50	2.19
2	1149.75	12.92	4.15	2.20
3	1 1 60. 3	7.18	4.64	2.11
4	1162.0	5.91	5.55	2.10
5	1157.0	5.20	0.84	2.13
6	1157.0	4.60	5.00	2.14
7	1157.0	4.30	6.03	2.14
8	1 1 86. 6	2.77	14.34	1.93

将每月的生产数据视为一个产量-流压测点,计 算得到如图 3 所示的 1, 3, 6, 8 月份的流入动态曲线。

图 3 州 62平 61 井 IPR 曲线

图 4 为计算得到的该井 2003 年 1~ 8 月的产液 指数变化曲线。由于该井所处的葡萄花油层为低 渗、薄油层,因此产量下降较快。

图 4 州 622 平 61 井产液指数变化

根据模型编写的计算软件已应用于大庆肇州油 田葡萄花油层 11 口水平井的流入动态预测, 对油井 工作制度的制定起到了很好的指导作用。目前 IPR 模型和软件应用效果良好。

参考文献:

- [1] ARCHER R A, AGBONGIATOR E O. Correcting for frictional pressure drop in horizontal well inflow perfor2 mance relationships[R]. SPE 80528, 2003.
- [2] 赵仁宝. 溶解气驱油藏中斜井和水平井流入动态[J].
 国外油田工程, 1994, 10(1): 15-18.
 ZHAO Ren2bao. Inflow performance of deviated and hor2

izontal wells in dissolved gas drive reservoir[J]. Foreign Oil Field Engineering, 1994, 10(1):15-18. [3] 刘慧卿,陈月明,杜殿发,等. 蒸汽吞吐水平井热流体
 流入动态研究[J]. 石油大学学报(自然科学版),
 1994, 18(增刊):81-83.

LIU Hu2qing, CHEN Yu2ming, DU Dian2fa, et al. Research on the inflow performance of steamsoaking hori2 zontal wells[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 1994, 18(Sup): 81 - 83.

[4] 杨道永,张琪,樊灵,等. 裂缝性油藏水平井流入动态研究[J].石油大学学报(自然科学版),1999,23(6):
44-49.

YANG Da2yong, ZHANG Qi, FAN Ling, et al. In2 flow performance of horizontal wells in naturally fractured reservoir[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 1999, 23(6): 44-49.

- [5] 李笑萍,赵天奉.考虑变质量湍流影响的水平井流入动态分析[J].石油学报,2002,23(6):63-67.
 LI Xia&ping, ZHAO Tian2feng. Inflow performance analysis on horizontal wellbore with changing qualit&tur2 bulence effection[J]. Acta Petrolei Sinica, 2002,23(6):63-67.
- [6] THOMS L K, TODD B J, EVANS C E, et al. Hori2 zontal well IPR calculation[J]. SPE Reservoir Evaluation & Engineering, 1998, 1(5): 392-399.
- [7] PERMADI P, WIBOWO W. Effects of nor2 uniform skin distribution on horizontal well inflow performance[R]. SPE 68952, 2001.
- [8] YILDIZ T. Inflow performance relationship for perforat2 ed horizontal wells[R]. SPE 67233, 2001.
- [9] 张琪. 采油工程原理与设计[M]. 东营:石油大学出版 社,2000.14-15.

[10] 刘想平,蒋志祥,刘翔鹗,等. 溶解气驱油藏水平井 无因次 IPR 曲线的新相关式及其应用[J]. 中国海上 油气(地质),2000,14(1):61-63.
LIU Xiangping, JIANG Zh2xiang, LIU Xiang2e, et al. A new correlation of demensionless inflow perfor2 mance relationships in horizontal wells in dissolved gas drive reservoir and its application [J]. China Offshore

[11] 黄炳光,李顺初,周荣辉. IPR 曲线在水平井动态分析 中的应用[J]. 石油勘探与开发, 1995, 22(5):56-58.
HUANG Bing2guang, LI Shun2chu, ZHOU Ronghui.
An application of IPR curves in the production behavior analysis of a horizontal well[J]. Petroleum Exploration and Development, 1995, 22(5):56-58.

Oil and Gas(Geology), 2000, 14(1): 61- 63.

(编辑 李志芬)